Characterize Software Release Notes of GitHub
Projects: Structure, Writing Style, and Content

Jianyu Wu*, Weiwei Xu*, Kai Gao*, Jingyue Lif, Minghui Zhou*!

*School of Computer Science and School of Software & Microelectronics, Peking University, Beijing, China
*Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China
TNorwegian University of Science and Technology, Trondheim, Norway
Email: {wujianyu, gaokail9, zhmh} @pku.edu.cn, xuww @stu.pku.edu.cn, jingyue.li@ntnu.no

Abstract—Release notes (RNs) summarize important changes
between two successive software releases to facilitate software
upgrades and serve as means of communication between software
and its users. However, existing research has shown that many
users cannot extract the information they want from RNs
effectively and efficiently due to poor structure and insufficient
content. Many efforts have been devoted to categorizing doc-
umented information in RNs, however, how exactly RNs are
organized, in what way RNs are written, and what is written
in RNs with respect to project domains and release types remain
under investigation. To bridge this knowledge gap, we manually
analyzed 612 RNs from 233 top popular GitHub projects to
characterize their Structure, Writing Style, and Content. We
find 64.54% of RNs organize changes into hierarchical structures
following three strategies, i.e., by Change Type, Affected Module,
or Change Priority. And 11.60% of RNs adopt multiple strategies
to present the changes. Among the three strategies to organize
changes, by Change Type is mostly adopted. RNs of major
releases and System Software are more likely to organize changes
by Affected Module. We also find three types of Writing Styles:
Expository, Descriptive, and Persuasive with increasing explana-
tion information and manual effort, taking 30.07 %, 34.80%, and
35.13% of RNs, respectively. 83.10% of RNs in System Software
projects adopt the Descriptive and Persuasive writing style. For
Content, we find System Software and Libraries & Frameworks
projects are more likely to record Breaking Changes, while
Software Tools projects emphasize Enhancements. Besides, Fixed
Bugs and Security Changes are less common in RNs of major
releases. Our findings not only serve practitioners with a roadmap
for customizing high-quality RNs but also shed light on future
research on automating RN.

Index Terms—release note, release engineering, characteristic,
empirical study

I. INTRODUCTION

When releasing a new version of software, release notes
(RNs) often serve as one of the most essential artifacts
that summarize the main changes between two consecutive
releases [1], such as what bugs are fixed and what new features
are introduced. In this sense, RNs serve as a communication
channel between RN producers and various stakeholders,
such as end-users and other internal software developers, to
deliver key information for software upgrades. In practice,
stakeholders usually refer to RNs to understand what has
been done in the new release. For example, end-users read
RN for new features that may improve their user experience.

¥ Corresponding Author

Downstream developers also refer to RNs to comprehend po-
tential beneficial and interrupting changes in the new release.
Internal developers sometimes treat RNs as a checklist to
review completed and pending tasks, e.g., known issues [2].!

With the wide adoption of “release early, release often” soft-
ware development philosophy [3], the pace of producing RNs
becomes faster but the process becomes more challenging [4].
Research has shown that producing RNs is a complicated,
strenuous, and time-consuming process [1], [4]. For example,
the operating system openEuler has to deal with about 15,000
commits per month [5]. Surveys conducted by Moneno et
al. [1] and Bi et al. [4] both reveal that producing RNs usually
takes more than four hours. Moreover, despite great efforts
devoted to producing RNs, the RNs may be of poor quality,
e.g., missing important changes or being poorly organized [2].
Some developers warn that each additional sentence loses
10% of the readers, and it is difficult to maintain a balance
between providing sufficient information and not becoming
too lengthy [6]. Unfortunately, there is no uniform or widely
recognized standard and guidelines to produce RNs [1].

To tackle these challenges, some efforts [1], [4], [7] have
been devoted to understanding what information RNs contain
in general. They summarize several types of information, such
as issues fixed and system internal changes. A recent work
conducted by Wu et al. [2] investigates the issues related to
RNs on GitHub. They find that (1) RNs suffer from poor struc-
ture, resulting in extra costs to find information in need, such
as burying important new features and breaking changes; (2)
RN also have issues with writing style, reducing clarity and
understandability. However, the best practices of organizing
RN (i.e. structure) and style of writing RNs (i.e. writing style)
remain uninvestigated. Moreover, due to the different nature
of projects in different domains and different kinds of releases
(i.e., major, minor, and patch), how the structure, writing style,
and content vary with project domains and release types is
worthy of study. Achieving such an understanding would help
to produce RNs meeting developers’ needs in a more targeted
way and further shed light on prospective improvements in
customizing RN production automatically.

Therefore, we set out to characterize the state of the practice

UIn this paper, we use the term “user” to refer to anyone who reads RNs
or uses RNs.

for Structure, Writing Style, and Content of different RNs
across software domains and release types. To that end, we
collect 612 RNs from the latest major, minor, and patch
releases of 233 top popular projects from GitHub. Our analysis
consists of two steps: (1) we use open coding on the 612 RNs
to derive the structure and writing style of RN. For the content,
we follow the category provided by the latest work based on
GitHub projects [2] and check the existence of each category
in these RNs; (2) we compare the distribution of structure,
writing style, and content for each project domain and release
type to understand how different domains of projects and
different types of releases produce RNs. The key findings are:

> Structure: we find that 64.54% of RNs organize changes
into hierarchy following three strategies: by Change Type,
Affected Module, or Change Priority. 11.60% of RNs
adopt multiple strategies to organize the changes. Projects
in all domains mostly organize changes by Change Type.
RNs of major releases and system software are more
likely to organize changes by Affected Module.

> Writing Style: we find three types of Writing Styles:
Expository, Descriptive, and Persuasive with increasing
manual involvement, taking 30.07%, 34.80%, and 35.13%
of RNs respectively. 83.10% of RNs of System Software
projects adopt Descriptive and Persuasive style.

» Content: we find that RNs of System Software and Li-
braries & Frameworks projects record Breaking Changes
more frequently, while Software Tools projects emphasize
on Enhancements. RNs of major releases contain fewer
Fixed Bugs and Security than RNs of minor releases.

Based on the results, we provide a roadmap to customize
RN of appropriate content, structure, and writing style across
the project domain and release type and discuss how far we are
to generate well-compiled RNs automatically. We provide a
replication package at doi.org/10.6084/m9.figshare.21383280

II. BACKGROUND AND RELATED WORK

There are many important artifacts in software develop-
ment [8], among which, release notes (RNs) are used to
summarize the major changes in the software since its previous
release. README [9] and user guide [10] are also two types
of important documentation available to users. In practice,
users are advised to check the README first to determine
whether the software meets their needs and to obtain basic
information about it. If so, they then refer to the user guide for
instructions on how to use the software. When a new version
of software is released, users consult RNs to understand
the incremental information and determine whether the new
changes will have an impact on their software [7].

Since switching the release pattern from “once and for all”
in the 20th century to “release early, release often” in the 21st
century, many software companies have attempted to shorten
their release cycles and speed up the delivery of their latest in-
novative products to users [11]. This results in a tight feedback
loop between developers and users, posing new challenges for
the production of high-quality RNs. For example, Firefox, a
famous open source browser with worldwide users [12], often

contains thousands of patches within one release cycle, leading
to the challenge in producing RNs [13] Many researchers
begin to study RNs from two major aspects: empirical studies
to understand RN practices and approaches to automate the
generation of RNs.

A. Empirical Studies of Release Note practices

Existing literature about software RN practices primarily
focuses on two aspects: (1) summarizing information cate-
gories in RN and related artifacts about RNs; (2) demystifying
challenges in the production and usage of RNs.

For the first aspect, Moreno et al. [1] manually examine
990 release notes from 55 open source projects to analyze
and categorize their content into 17 types, such as fixed bugs,
new features, and modified code components. Abebe et al. [7]
manually analyze 85 release notes across 15 different software
systems and identify six different types of information, such as
caveats and problems. They also examine the scope of issues
listed in RN, i.e., all issues or selected issues are included in
RN, and discover that the majority of RNs list only a limited
number of issues. Bi et al. [4] study the content of 32,425
RNs from 1,000 GitHub projects and categorize common RN
content into eight topics, including bug fixes, internal system
changes, etc. They find that RN content varies across domains
of software, for example, for application software and system
software, new features are the most frequently documented.
Nath et al. [14] analyze relevant artifacts of 3,347 RNs and
find that key artifacts include issues, PRs, commits, and CVEs.
Besides, Yang [15] collect 69,851 RNs of popular apps on the
Google Play Store. Combined with surveys and user reviews,
they reveal six patterns of RNs, for example, Short updating
steady and Short non-updating steady. For the second aspect,
Aghajani et al. [8] investigate the importance of different kinds
of documentation by survey. They find that RN absences are
common, and suggest that RN producers should include RNs
on the release checklist as a mandatory item. Wu et al.[2]
further explore how RNs go wrong or fail to meet users’ expec-
tations. They manually analyze 1,731 GitHub issues to build a
comprehensive taxonomy of RN issues with four dimensions:
Content, Presentation, Accessibility, and Production.

However, we still lack a comprehensive empirical under-
standing of how exactly software RNs are organized, in what
way RNs are written, and what is written in RNs across
different project domains and release types, which is critical
to further customize RNs.

B. Release Note Automation Tools

To reduce the manual effort involved in the production
of RN, prior research has explored automated methods for
generating RNs. Klepper et al. [16] propose a semi-automated
RN generation tool based on information gathered from both
build server and issue tracker which can tailor RNs to specific
audiences’ needs. Moreno et al.[1] provide ARENA that inte-
grates both change information from version control systems
and rationale information from issue trackers into RNs with
predefined categories. Ali et al. [17] extract code changes

by git diff between two versions, generate natural language
summaries for changes, link related issues to changes, and
output a RN document by Doc Generator. Nath et al. [18]
propose a method which generates RNs from commit mes-
sages and PRs by integrating the GloVe word embedding
technique with TextRank. Jiang et al. [19] propose an approach
called DeepRelease by formulating change entry generation
as text summarization tasks and change categorization (e.g.,
new features and bug fixes) as multi-class classification tasks.
Recently, Kamezawa et al. [20] construct a dataset called
RNSum which contains approximately 82,000 English release
notes and associated commit messages. They also propose
two deep learning-based approaches to generate RNs with
unlabeled commits.

Furthermore, many automated RN generation tools have
been developed to facilitate the generation of RNs since the
year 2014, such as Semantic Release, [21], github-changelog-
generator [22], Release It [23] and Release Drafter [24]. How-
ever, all tools require that each change should be documented
using predefined templates or labels in order to generate RNs
based on predefined criteria, which is a laborious task for
contributors and maintainers. RN producers may still post-edit
the generated RNs to improve their readability, for example
by summarizing the changes.

However, most of these approaches ignore the differences
between different project domains and release types, resulting
in a lack of customization of RN production. Our work aims
to understand the characteristics of the structure, writing style,
and content of RNs with respect to project domains and release
types, which help produce RNs that are better tailored to
developers’ needs as well as shed light on future improvements
in automating the production of customized RNs.

III. METHODOLOGY
A. Data Collection

1) Project Selection: To formulate good practices regarding
Structure, Writing Style, and Content of RNs across different
domains and release types, we carefully select projects with
the following criteria via GitHub API:

o The project should be created before July 1st, 2019 (three
years ago) and have at least one commit in 2022 to ensure
the activeness;

o The project should have more than ten releases to filter out
those projects without RNs and inexperienced ones;

o The project should have more than 10k stars to ensure high
popularity and representativeness.

The purpose of collecting data from GitHub is twofold: (1)
GitHub hosts the largest collection of open source software
in the world with over 83 million developers and 200 million
repositories [25]. (2) GitHub provides developers with “Re-
lease Pages” to conveniently exhibit RNs to users.

We collect a total of 955 projects fulfilling the above criteria.
To make manual effort affordable, we further randomly select
274 projects from these projects based on a 95% confidence
level and a 5% confidence interval, followed by previous

TABLE I
PROJECT STATISTICS OF THE DATASET FOR RNS

Mean Median Std. Distribution
Age (in Days) 3,078.37 3,060.00 963.90 i
of Commits 8,044.40 3,365.0 11990.78 i::
of Stars 25,357.79 19,488.00 21,007.73 &:
of Contributors 222.85 211.0 134.63 Il
of Forks 4,609.06 2,344.00 7.828.34 . 2
of Issues 403.97 189.00 576.35 .
of PRs 53.68 21.00 91.60 ik
of Releases 98.50 5800 12575 i

work [26], [27], [28], [29]. Then, we browse through their
GitHub repository pages as an initial familiarization and
manually exclude 28 projects that are non-software projects,
e.g., OpenAPI-Specification [30], and have released multiple
versions but no release notes. Finally, we obtain 246 projects.

2) Release Note Selection: There are different types of re-
leases, e.g., major and minor releases [31]. To inform users of
release types, many versioning schemes are proposed, among
which, Semantic Versioning (also known as SemVer) [32] is
increasingly adopted by software projects [33]. So, in this
paper, we rely on SemVer to identify release types. SemVer
specifies the version number denoted as xz.y.z, where x.0.0
as a Major release, z.y.0 (y # 0) as a Minor release, and
x.y.z (z # 0) as a Patch release. We filter out the projects and
their RNs that do not follow the SemVer versioning schema.
There are, however, some releases that follow the format, but
they may not adhere to the rule of denoting different types
of releases. For example, the version 0.4.9 of ArchiveBox is
actually a major release as stated in the RN. To mitigate this
problem, we go through the RN content of each release to
check whether there is any explicitly declared release type
information. If not, we label its type based on SemVer.

Afterwards, we collect the most recent RN's of each project’s
major, minor, and patch releases because we consider the
most recent RN can reflect the current state of the software
RN management practices. To ensure the quality of RN,
the first author browses through these 246 GitHub projects’
release pages and excludes 87 RNs written in non-English
languages, of unidentifiable release type, or containing little
information about the changes. Besides, some projects have
not yet released their major versions, e.g., vivus.js [34] and
only produced RNs for specific versions, e.g., sentry [35].
The final dataset in our study consists of 612 RNs from 233
projects, including 162 major releases, 227 minor releases,
and 223 patch releases. These projects cover over 10 types
of programming languages and the repository statistics are
summarized in Table I. We can observe a long-tail distribution
in the metrics, which is expected and common in many mining
software repository researches [36], [2], [37].

Since RNs summarize changes between each collected
release with their previous releases, we also clone their repos-
itory and use PyDriller [38] to get the number of commits to
gain a deeper understanding of release characteristics.

B. Data Analysis

To achieve our research goal, we classify the obtained
projects into different domains, categorize the structure, writ-
ing style, and content of their RNs, and make a comparison
of the RNs across software domains and release types.

1) Domain Classification: Researchers have found that the
documented information in RN varies across domains [4],
which motivates us to further understand the variation of
RN characteristics across project domains. Borges et al. [39]
collected 2,500 projects on GitHub and manually classified
these projects into six domains: (1) Application Software,
(2) System Software, (3) Web Libraries & Frameworks, (4)
Non-web Libraries & Frameworks, (5) Software Tools, (6)
Document. However, they did not provide a detailed process
of the classification or coding guide. Therefore, we first sample
30 projects from each domain (except the Document domain)
provided by the previous work [39] to be familiar with their
classification convention. Two authors, both with over seven
years of software development experience, individually label
these projects into the other five domains by reading their
READMEs, repository labels and the first ten pages returned
by Googling their names. They then compare their labeling
results with theirs [39]. They find that the differences mainly
concentrate on the projects of “Web Libraries & Frameworks”,
and “Non-web Libraries & Frameworks” since there is no clear
definition of what is “web”. As a result, they merge the two
domains into “Libraries & Frameworks”, and the final four
software domains are:

o System Software: software that offers basic services and
infrastructure to other software, e.g., operating systems,
servers, and databases.

o Libraries & Frameworks: software that provides a collection
of reusable functionalities to facilitate software development
in specific domains such as Web and machine learning.

« Software Tools: software that facilitates developers with uni-
versal software development tasks, like IDEs and compilers.

o Application Software: software that offers end-users with
functionality, such as browsers and text editors.

Then the two authors individually classify the 233 projects
into four domains. We use Cohen’s Kappa (k) to measure the
inter-rater agreement between two authors and the k value is
0.83, indicating a high agreement. For the disagreed results,
the authors discuss thoroughly until reaching an agreement.
The number of projects under Libraries & Frameworks, Ap-
plication Software, Software Tools, and System Software is
91, 69, 45, and 28, respectively.

2) Categorization of Structure, Writing Style, and Content:
We next describe how we identify the categories of structure,
writing style, and content of RNs.

Structure aims to investigate how RNs are organized, and
writing style focuses on in what way producers use available
information to describe changes in RNs. To the best of our
knowledge, there is no prior work systematically investigating
the two characteristics. While for content, existing work has
proposed several content categories. In this study, we choose

to follow the category proposed by Wu et al. [2] since their
category is based on the practical issues proposed by producers
and users on GitHub. Their category consists of eight types of
change content: (1) Breaking Changes, (2) New Features, (3)
Enhancements, (4) Fixed Bugs, (5) Documentation Changes,
(6) Dependency/Environment Changes, (7) Security Changes,
and (8) License Changes.

Therefore, we choose to conduct qualitative manual labeling
which consists of two parts:

o A pilot study to derive the types of structure and writing
style and familiarize the eight change content types pro-
posed by Wu et al. [2].

o An extended study to identify and classify the structure,
writing style, and content of the remaining RNs based on
the results of a pilot study.

Pilot Study. We randomly sample 183 (30%) from the 612
RN for a pilot study. The first two authors, named inspectors,
participate in the pilot study. They first read the RNs to
get familiarized with them. Then they independently develop
labels to describe the structure and writing style of RNs and
get familiarized with the eight content types proposed by Wu
et al. [2]. Specifically, for Structure, since RNs on GitHub
pages are written in Markdown, they independently go through
each level of headings in a top-down manner to understand
what strategies producers adopt to organize content. If the
RN has no heading level, that is, just stacks them up, the
structure of the RN is labeled as Plain List. For Writing
Style, they compare each change with the content of related
commit/PR/issue like Abebe et al. [7] to investigate how
producers use available information to describe changes in
RNs. For Content, they first read the code book and the issues
related to RN content provided by Wu et al. [2] respectively.
Then for each change in these RNs, they review the titles,
descriptions, labels, changed codes, and comments of each
related commit/PR/issue to understand what types of category
this change refers to. The above process is iterative, and the
third author is included as an arbitrator to (1) discuss with the
two inspectors about their label for the structure and writing
style until an agreement is reached to produce the final codes;
(2) mediate, discuss, and resolve any disagreement regarding
the labeling results for the content.

Extended Study. Based on the initial categories in Sec-
tion III-B2, the inspectors iteratively conduct independent
labeling for remaining RNs. We follow the work [2] to set
another three rounds (143 RNs for each round) to analyze
the results. If a RN’s writing style or structure cannot be
classified into an existing category, this code will be added
into a temporary Pending category. Each round is followed
by a meeting among the inspectors and arbitrator to (1)
resolve labeling conflicts and determine the final label for the
structure, writing style, and content; (2) justify whether new
categories should be added for codes in the Pending category.
By the end of each round, we also use Cohen’s Kappa (k)
to measure inter-rater agreement between two inspectors and

the values for Content range from 0.76 to 0.922, for Structure
from 0.87 to 0.92, and for Writing Style from 0.74 to 0.82,
indicating increasing and high agreement. Note that (1) a
RN may adopt multiple strategies to organize its content and
will be assigned multiple strategies; (2) If a change refers to
multiple types of content, e.g., both Fixed Bugs and Breaking
Changes, it will be assigned multiple labels.

C. Developer Interview

To validate our categories for the structure and writing
style, we conduct semi-structured interviews with two industry
software engineers (named interviewee A and interviewee B
respectively) from famous IT companies. The two developers
both have rich experience in publishing and using RN,
especially that inferviewee A is the core developer responsible
for producing RNs within the team. In order to facilitate a
better interaction, both interviews are conducted face-to-face
by two authors (one is the leader and the other asks additional
questions as needed) [40], [41] and take 45 minutes and 1
hour and 21 minutes respectively. Following the process [41],
two interviews begin with the question “What structure did
you use to organize the changes and in what way did you
describe the changes in your software development process?”.
Then, we present our categories of the structure strategy
and writing style and ask another question “What are your
thoughts on the following structure strategies and writing
styles? Have you seen them or considered using them?” These
open-ended questions are intended to assess the coverage
and representativeness of our categories. First, Interviewee A
replies that they are imitating how they organize and describe
the changes in their well-known similar projects. Inferviewee
B shows us the RNs of their project and explains that as
their project is in the initial stage, they primarily focus on
development and only use the Plain list to announce significant
changes. In summary, they consider that our categories are
clear and informative and cover the structure and writing styles
of RNs they have encountered.

We finally derive four strategies of structure and three types
of writing styles. It takes more than six weeks to complete the
manual labeling process.

IV. RESULTS
A. Structure

In this section, we illustrate how different domains
of projects and different types of releases structure their
RNs. Following the open coding process described in Sec-
tion III-A2, we categorize four mainstream strategies of RN
structures, i.e., Plain List, or a hierarchical list by Change
Type, by Affected Module, and by Change Priority, whose
corresponding descriptions are shown in Table II. Furthermore,
the table shows the percentage of RNs adopted by major,
minor, and patch releases for each strategy.

As we can see in Table II, 35.46% of the studied RNs are
structured as Plain List, while the remainder is structured as

2We respectively measure the Cohen’s Kappa values for the seven categories
of RN content expect for the License Changes (as there are only two cases).

s Hybrid
mmm Affected Module

Change Priority W Plain List

mmm Change Type

Percentage of RNs

Libraries Software
& Frameworks Tools
Project Domains

System
Software

Application
Software

Fig. 1. Distribution of Structure under four domains for release types. Bars
from left to right represent Patch, Minor, and Major releases respectively.
Hybrid represents multiple strategies.

hierarchical lists. Among the three strategies for hierarchical
lists, by Change Type is the most frequently adopted, account-
ing for more than half of all studied RNs. It is possibly because
organizing changes by their content is a common practice
supported by many automated tools, e.g., Release Drafter [24],
and specifications, e.g., the well-known Angular Conventional
Commits [42]. Contrarily, only 15.69% and 6.70% of all
the studied RNs are organized by Affected Module and
Change Priority, respectively. Interestingly, we also observe
71 (11.60%) RNs that adopt multiple strategies simultaneously.
Among the 71 RNs adopting multiple strategies which we refer
as Hybrid, 51 RNs organize changes by both Change Type
and Affected Module, 18 RNs by Change Type and Change
Priority strategies, and only two RNs by Affected Module
and Change Priority strategies. When changes are organized
into a multiple-level list, the outer and the middle level are
usually organized by different strategies, and the inner level
specifies concrete changes. For example, a native GraphQL
database with graph backend, adopts Change Type strategy and
Affected Module strategy in the outer two levels, respectively,
to structure changes in RN for the minor version 21.12.0 [43].

Different strategies are preferred for the types of releases.
Specifically, for patch releases, nearly half (48.88%) of RNs
adopt plain list strategy to organize their changes, while RNs
of minor and major releases adopt more hierarchical strategies,
especially the Change Priority strategy increasing from 2.24%
in patch releases to 13.58% in major releases.

Figure 1 shows the distribution of strategies adopted by
different types of releases of each project domain. RNs of
System Software projects rarely adopt the Plain List structure
to organize changes. Compared with the other three domains,
System Software projects prefer to organize their changes
by Affected Module and Hybrid strategies. The reason might
be that System Software projects usually involve complex
development processes, with hundreds or even thousands of
commits per release. Therefore, hierarchical lists are more
clear than Plain List in presenting information.

In the case of Application Software projects, RN producers
prefer to present the changes as Plain List or a hierarchical

TABLE II
STRATEGIES TO ORGANIZE THE CHANGES IN RELEASE NOTES.

Strategy Description Major. Minor. Patch. Total.

Plain List All changes are presented as a plain list. 23.46% 30.84% 48.88% 35.46%
a Changes are organized based on their types of content,

Change Type e.g., New Features, Fixed Bugs, and Breaking Changes. 6296% 58.59% 42.15% 53.76%

Affected Module® Changes are grouped based on the modules they affect. 20.37% 16.30% 11.66% 15.69%

Change Priority® Changes are ranked based on their importance perceived 13.58% 6.16% 224% 6.70%

by RN producers.

* Note that a RN may adopt multiple strategies, so the sum of each column
¢ Example Reference: https://github.com/socketio/socket.io/releases/tag/4.0.0
b Example Reference: https:/github.com/dbeaver/dbeaver/releases/tag/22.0.0
¢ Example Reference: https://github.com/debug-js/debug/releases/tag/4.0.0

I Hybrid [Change Priority [Plain List
[0 Affected Module [Change Type
3
10 4
2
€
§
2
© 1071
o
[}
Q
€
S 1
Z 10 1
0
10 1
System Libraries Software Application
Software & Frameworks Tools Software

Project Domains

Fig. 2. Distribution of the number of commits (log) between releases under
four domains for five Structure strategies.

list based on change types. A possible explanation is that
Application Software projects provide specific functionality
for users, and such structures are easy for users to comprehend.
For example, Aerial, a famous mac screensaver with more
than 20k stars, only lists the information about new features
to users without providing any technical details. RNs of
Libraries & Frameworks and Software Tools projects follow
a similar distribution over the five strategies in their patch,
minor, and major releases. Particularly, they prefer to present
changes as Plain List in patch releases and as hierarchical
lists in minor and major releases. For example, Slim, a PHP
framework that helps developers quickly write simple web
applications and APIs, highlights the most valuable changes
in the “Major Changes” section, while other changes are listed
in the “Changelog” section in the RN of version 4.0.0 [44].
Figure 2 presents the distribution of the number of commits
between two successive releases over these strategies for each
project domain. Obviously, Plain List strategy is popular for
releases containing fewer commits. Perhaps not surprisingly,
fewer commits suggest less information, and Plain List is
sufficient and efficient to present changes clearly. With more

is greater than 100%.

commits between successive releases, RN producers prefer
to use the hierarchical structure to present the changes. De-
spite the fact that hierarchical structures require more effort,
they make it easier for users to locate information quickly,
especially when there are numerous changes. We can also
observe different shift patterns of strategy preference for
different domains of projects with the increase in the number
of commits between two successive releases. For Software
Tools projects, as the number of commits between releases
increases, the preferred structure strategy gradually shifts from
Plain List, to Change Type, to Affected Module, and to Hybrid.

Summary for Structure: .

We find about 1/3 of RNs are organized as plain lists
and 2/3 RNs are organized as hierarchical lists. We
identify three strategies that developers adopt to develop
hierarchies including by Change Type, Affected Module,
and Change Priority. Changes are primarily organized by
Change Type across all domains. RNs of major releases
and RNs of System Software projects are more likely to
organize changes by Affected Module. 11.60% of RNs
adopt multiple strategies to present the changes.

\ J

B. Writing Style

In this section, we report what styles producers employ to
describe changes in RNs. We derive three types of writing
styles for RNs based on classical writing theory [45], as shown
in Table 111, i.e., Expository, Descriptive3, and Persuasive with
increasing manual involvement.

Table III also provides the frequency of each writing style
for major, minor, and patch releases. 41.70% of RNs for patch
releases are written in the Expository style, i.e., RN producers
do not include any additional information in RNs other than
the content of the change-related commits/PRs/issues. 59.26%
of RNs for major releases contain additional information to
assist developers in understanding the changes.

3We refer to the web writing style convention [46] and also combine the
“Descriptive” and “Narrative” writing styles into “Descriptive” in RNs.

TABLE III
CATEGORIES OF WRITING STYLES IN RELEASE NOTES.

Level Description Major. Minor. Patch. Total.
. RN producers directly list the content (usually title) of
Expository® P y : (usually title) 1420% 29.96% 41.70% 30.07%
change-related commits/PRs/issues
RN producers re-phrase the content of change-related
.. commits/PRs/issues to increase the readability. Some-
Descriptive” . . Y. S0D 26.54% 33.48% 42.15% 34.80%
times RN producers summarize the content of similar
commits/PRs/issues.
In addition to presenting the content of related com-
mits/PRs/issues, RN producers provide additional infor-
Persuasive® mation to help developers understand the changes, such 59.26% 36.56% 16.14% 35.13%
as the rationale behind the changes, the impact of the
changes, and guides for the upgrades.
@ Example Reference: https://github.com/Homebrew/brew/releases/tag/3.5.5
b Example Reference: https://github.com/iina/iina/releases/tag/v1.3.0
¢ Example Reference: https://github.com/GoogleContainerTools/kaniko/releases/tag/v1.0.0
s Expository mmm Descriptive mmm Persuasive I Expository B Descriptive [T Persuasive
10T EEEEEE SEEE S EEEE SEEE
I I I I B
» 801
P
x 12}
S 60 =
g I I I £ 10°
8 3
P I :
e o
5 t
Q 3
201 £ 104
=z
0<
System Libraries Software Application
Software & Frameworks Tools Software
Project Domains 10
Fig. 3. Distribution of Writing Style under four domains for release types. The Ssggg:‘e a Fl-rg)rl;?é\i;grks Sgl_fé\glzre Agggsvaaﬁr‘;"

bars from left to right represent Patch, Minor, and Major releases, respectively.

For example, as a well-known JavaScript compiler, Babel
offers well-crafted RNs for the major release v7.0.0, includ-
ing a summary of the whole changes, a highlight of their
significant impact on users, usage case, migration guidelines
for major breaking changes, and detailed background of each
other change accompanied with links [47]. However, they only
classify the PRs into different sections without modifying the
description in the patch release 7.18.8 [48]. This is probably
because, on the one hand, patch releases usually contain a few
bug fixes, and the content of change-related commits/PRs/is-
sues (i.e., Expository style) are sufficiently self-explanatory.
Major releases often introduce massive and complex changes,
which if not explained in a clear manner, may confuse
users. Therefore, producers devote greater efforts (e.g., taking
Persuasive style) to refining RNs of major releases. On the
other hand, as revealed in prior work [4], users state RNs of
major releases should be improved regarding the description.
Indeed, a well-compiled RN of major releases indicates that
the software is under active development and maintenance.

Also, we notice that the writing style of RNs is influenced
by automated tools used to generate RNs, which projects

Project Domains

Fig. 4. Distribution of the number of commits (log) between releases under
four domains for three Writing Style categories.

adopt for simplicity. For example, Saleor [49] uses the popular
release-it [23] tool and Rasa employs a script [50] to generate
RN for patch releases. However, popular RN generation tools
on GitHub can only produce RNs with Expository style,
because they can only present the related commits/PRs/issues
description and contributors without any additional informative
information, which however requires manual efforts and can
not be automated at present.

In Figure 3, we can observe that the three writing styles
follow similar distribution for Application Software and
Libraries & Frameworks projects. For the patch release, the
most frequently adopted writing style is Expository, taking
41.46% of RNs in Application Software and 46.07% of RNs
in Libraries & Frameworks projects. For RN of the patch and
minor releases for Software Tools projects, the most common
writing style is Descriptive. It reflects that RN producers
of Software Tools projects usually re-phrase and combine
the content of related commits/PRs/issues. RN producers of
System Software projects make the most efforts to compile

their RNs for better clarity and readability, with a higher
percentage of Persuasive writing style than the other three
domains, taking 42.31%, 57.14% and 70.59% for patch, minor
and major releases respectively. In the case of etcd, which is a
distributed consistent key-value database, it describes notable
enhancements for solving the scalability issues after upgrading
the v3 API in detail and the impact of the upgrade on users,
e.g., improved latency and throughput.

From Figure 4, we can observe more clearly that the writing
styles for RNs across four domains are all related to the
number of commits between versions. More commits between
releases indicate that RN producers have to devote more time
and efforts to improving the quality of the RNs’ writing style.

Summary for Writing Style: .

We find three types of writing styles: Expository, Descrip-
tive, and Persuasive with increasing manual involvement,
taking 30.07%, 34.80%, and 35.13% of RNs respectively.
83.10% of RNs of System projects adopt Descriptive and
Persuasive style. 59.26% of RNs of major releases pro-
vide additional information for changes, e.g., rationales
and impacts of changes to improve clarity and readability.

\ J

C. Content

Bi et al. [4] reported the top three documented categories.
For different domains, the three categories are often the same,
i.e., new features, fixed bugs, and system internal changes, but
have different proportions, which advanced our knowledge of
how different domains of projects document the content of
changes. In this paper, we further reveal that different domains
of projects show unique preferences for the other types of
content, which are equally important.

In Figure 5, we present the percentage of RNs containing
each content type across different project domains and release
types. As there are only two RNs containing Licence Changes
information (transferring to MIT license), we omit it in Fig-
ure 5. Consistent with previous work [4], [7], we find Fixed
Bugs and New Features are the most frequently documented
information in all four project domains. It suggests that RN
producers commonly recognize two types of information es-
sential in RNs. Besides, we also find Dependency/Environment
Changes are also frequently documented, appearing in approx-
imately half of RNs in the four domains. Intuitively, the first
step for users to use these software projects is to successfully
install and configure them. So RN producers usually record
Dependency/Environment Changes in RNs to inform users to
avoid installation failures.

Libraries and Frameworks projects have the highest per-
centage of RNs containing Documentation Changes (26.32%)
among the four domains. Additionally, over 1/3 of their RNs
contain Breaking Changes. Libraries & Frameworks projects
provide APIs that allow users to reuse their functionalities.

SWe use the abbreviations from left to right to represent Breaking Changes,
New Features, Fixed Bugs, Enhancements, Document Changes, Dependen-
cy/Environment Changes and Security Changes respectively.

Application Software 20.72 17.12 80

70
Libraries&Frameworks 26.32 44.13 13.36 60

50

Domain

Software Tools 21.31 42.62 25.14 - 40

=30

System Software 22.54 35.21

=20

80

Major 32.72 24.07

70
60

50

Minor 27.31 2511

- 40

Release Type

- 30

Patch 12.56 1211 - 20

31.84

&

S F &L

A
&
& <

Fig. 5. Percentage distribution of Content categories across the project
domains (upper) and release types (lower).>

Documentation Changes are necessary for users to be able
to utilize these APIs, and Breaking Changes may cause
downstream software to crash. Both pieces of information are
critical to inform users whether to upgrade or not. System
Software projects are often complex providing basic services
and infrastructure to other projects. Their audiences are broad
including both end-users and developers. To serve different
users, their RNs contain the most comprehensive informa-
tion. Specifically, Breaking Changes and Security Changes
account for the highest percentage of RNs for System Software
projects. There are two possible reasons. On the one hand, due
to the complexity of System Software projects, they are more
likely to introduce Breaking Changes and suffer from security
vulnerabilities. On the other hand, System Software projects
usually act as the basis for other software, which means
that most of their users are concerned about their breaking
changes and security vulnerabilities. Both Software Tools and
Application Software projects usually provide many user-
oriented functionalities and the frequency of New Feature
and Fixed Bugs for RNs of both domains is almost identical.
RNs of Software Tools have a higher percentage of Breaking
Changes, Enhancements, and Security Changes, while RNs
of Application Software projects contain more Document and
Dependency/Environment information for ease of installation
and upgrade for end-users. Only 50.45% of the RNs for
Application Software projects introduce Enhancement, while
67.21% of RNs in Software Tools projects include Enhance-
ments. Such differences may be attributed to the audiences
of the project domains, i.e., the major users of the Software
Tools and Application Software are developers and end-users,
respectively. Users of some Application Software projects may

not be developers, thus technical details are not necessary
and even confuse users. While most users of Software Tools
projects are developers, who benefit from technical details.
As shown in Figure 5, we can observe that for a patch
release, 21.08% of RNs introduce some new features in the
patch release, such as the version 4.3.4 of Redis-py [51];
even for minor releases, 36.56% of RNs contain breaking
changes, for example, the version 1.8.0 of Packer [52], which
violates the SemVer rule [32] We observe that the frequency
of most content categories, e.g., New Features and Breaking
Changes, increases significantly with a shift from minor to
major releases), which indicates that major/minor releases tend
to contain more updates and prefer to introduce more content.
It should be noted, however, that the percentage of Fixed Bugs
and Security Changes in major releases is even lower than
in minor releases, which illustrates the producer’s strategy:
only introduce information that tantalizes users into upgrading.
For example, spaCy, an NLP library, only introduces New
Features, Enhancements, Breaking Changes in the major ver-
sion 3.0.0 [53], while recording the fixed bugs and security
vulnerabilities in its patch, and minor releases.

Summary for Content: .

System Software and Libraries & Frameworks projects
record Breaking Changes more frequently, while Soft-
ware Tools projects emphasize Enhancements. RNs of
System Software contain the most comprehensive infor-
mation to serve different users. Fixed Bugs and Security
Changes are less common in RNs of major releases.

V. IMPLICATION

Our results provide rich implications for RN production
from the dimensions of Structure, Writing Style, and Content.

A. Release Note Structure

As an essential reference source for software upgrades,
RNs should be well-structured in a way that readers can
extract necessary information easily. We refer to Information
Architecture (IA) models that focus on effectively structuring,
organizing, labeling the content [54] to further understand our
structure strategies in RNs. There are four IA models: tunnel,
flat (matrix), deep hierarchy (tree), and hybrids to convey
information more effectively and efficiently. Our results align
with IA models. Specifically, Plain List corresponds to tunnel,
the three hierarchical strategies correspond to deep hierarchy
(tree), and multiple strategies correspond to hybrids. Tunnel
architecture in IA is a simple straightforward structure for
seeking information and we observe that RNs for patch
releases generally adopt a Plain List structure, while RNs of
minor and major releases often choose hierarchy list structures
to avoid visual chaos. Therefore, we suggest RN producers use
a Plain List structure when the release only contains a few
changes and a hierarchy list for releases with many changes.

Hierarchy architecture organizes information in a top-down
manner in order to allow users to review increasingly detailed

content [55]. We observe that different hierarchical strategies
are preferred by projects from different domains since each of
these hierarchical structures has its own unique characteristics.
According to IA, the structure should take user and content
into account. Therefore, we presume that RNs organized by
Change Type and Change Priority are more friendly to end
users, while those by Affected Module are more developer-
friendly. For the software projects, such as Application Soft-
ware, mainly targeted at end-users, we recommend that they
organize RNs by Change Type or Change Priority, which
will facilitate locating relevant contents, such as new features
and highlighted changes. For Libraries & Frameworks and
Software Tools projects, their users are primarily developers
who expect to know more low-level technical information [4].
Except for providing change type information, RN producers
can also provide information on affected modules to assist
users in understanding whether and to what extent their
software might be affected by this new release. For example,
System Software projects may consist of multiple components,
provide basic services and infrastructure to both developers
and end-users, and have a more complex development process,
e.g., each component of Linux is maintained by specific
maintainers. [56]. Affected Module or Hybrid strategies can be
used to facilitate the localization of the information. However,
Hybrid strategy is not a silver bullet. On the one hand, it
requires additional information about changes, which will
impose extra labour on contributors or RN producers. On
the other hand, multiple strategies may scatter information
throughout the RN and confuse users who are interested in
certain types of information, such as changes affecting a
specific module scattered throughout several sections.

B. Release Note Writing Style

Another purpose that RNs serve is to help users understand
the changes. Therefore, writing styles also play a vital role.
We borrow classical writing theory [45] and apply it to gain
a deep understanding of the writing style characteristics of
RNs. According to the survey conducted by [2], RN producers
are usually core members of the team (e.g., architects, project
managers), who are also responsible for other routine tasks,
such as scheduling the development process. Thus, choosing
a proper writing style for RNs is also a trade-off between
development responsibility and producing RNs with well-
compiled descriptions to meet users’ needs. Our results can
help producers strike a balance. To shorten the time for
producing RNs, we recommend that RN producers adopt
the Expository style when the changes are limited and RN
producers can also resort to existing RN generation tools
mentioned in Section II-B. However, if the number of changes
increases, users may become lost in the raw content of change-
related commits/PRs/issues. They have to spend plenty of
time understanding the effect, rationale, and goals of the
changes. RN producers should pay greater attention to the
Descriptive and Persuasive styles in this case to make RNs
clear and compelling. As far as we know, there are no tools
that automatically generate RNs in Persuasive style.

Additionally, we provide a reference on how to adopt a
proper writing style by the number of commits contained in
releases for the four domains in Figure 4. We also recommend
that RNs of System Software projects provide more infor-
mative explanations of the changes to serve different users,
thereby reducing the cost of upgrading. Note that when reading
carefully compiled RNs, users can sense the sincerity of RN
producers [57], which motivates them to become more loyal
and more willing to upgrade [58].

C. Release Note Content

In Section IV-C, we find the distribution of content types
varies with project domains and release types. Specifically,
RNs of Libraries & Frameworks projects need to pay more
attention to Document Changes to facilitate the usage of
downstream projects, while RNs of Software Tools projects
may focus more on performance and security improvements to
strengthen developers’ confidence when they develop software
with it. We recommend that RN producers of System Software
projects provide a more comprehensive introduction of various
categories to serve a variety of audiences. When developers
have to balance the information abundance and RN length
for major or minor releases, New Features, Enhancements,
and Breaking Changes can be prioritized while the number
of occurrences for Fixed Bugs and Security Changes can be
minimized. A developer states that “it is a best practice to
separate bug fixes (patches) from new features (minor) and
breaking changes (major), into separate releases” [59].

In particular, our results indicate that some software projects
violate SemVer in practice, which could lead to inaccurate
assessments of the upgrade risk by users [2]. To minimize
the impact of introducing incompatible changes, RN produc-
ers should further evaluate the software update/upgrade and
adhere strictly to the SemVer convention.

D. How far We Are to Generate Release Notes Automatically

Extensive works in Section II-B have explored automated
generation from the perspective of contained information. For
structure, however, none of the popular RN generation tools
and studies mentioned in Section II-B can fully automate the
customization process. These tools require strict commit rules
to categorize the changes such as Angular Commit Message
Conventions [42], or a PR/issue labeling system during the re-
view process. Thus, we recommend that a dedicated classifier
be designed to automatically categorize the changes into the
various types of content and link the changes with affected
modules. Besides, the process of automatically organizing
changes by their priority is challenging though crucial. RN
producers can further filter out trivial changes by combining
the location and type of change.

For Writing Style, researchers have attempted to semi-
automatically generate RNs, e.g., using pre-defined tem-
plates [1]. However, these methods have never been applied to
actual production environments [4]. To generate rationales and
goals for the changes, as well as the effect of the changes, we
suggest: (1) exploring and mining diverse types of relevant

information, e.g., commits, PRs, issues, and CVEs between
releases, milestones and wiki for the project [14]; (2) resorting
to state-of-the-art NLP techniques, such as key information
extraction [60], text summarization [61] and style transfer [62].

VI. THREATS TO VALIDITY

Internal Validity concerns the threats to how we perform
our study. The subjectivity of inspection is a crucial threat to
our work. Our categories construction and labeling process
for Content, Structure, and Writing Style is based entirely
on manual analysis. Due to the inspector’s experience, the
classification of the projects’ domain can introduce errors. To
minimize these threats, two authors are involved in inspecting
RNs and reaching an agreement with the help of a third
author through discussions. Finally, we respectively measure
the kappa values for content (k > 0.76), structure (k > 0.87),
and writing style (k > 0.74), demonstrating the reliability of
the coding schema and procedure.

External Validity refers to the threats to generalizing our
findings. The first threat relates to the selection of data sources.
Our works use GitHub projects as the only data source to
characterize the software RNs. There may be valuable insights
that are overlooked from other sources that have been used
in previous studies [7]. To mitigate it, we invite industry
developers to validate whether our categories can cover the
RN structures and writing styles they have encountered. We
believe our results reveal valuable insights into RN production,
as well as practical characteristics. The selection of criteria is
a second external validity. We design several criteria to collect
high popularity and representative projects in Section III-Al,
because these projects are more likely to develop good and ma-
ture practices of producing RNs. However, only 955 projects
on GitHub meet our strict criteria for filtering projects. After
sampling and classifying the domains, the number of their RNs
across the various domains is not evenly distributed, which
may introduce bias into our analysis. Besides, since the size
of our dataset is comparable with previous studies [63], [64],
[65], [66], [67], we consider this threat is reasonably reduced.

VII. CONCLUSION

In this paper, we manually analyze 612 latest RNs from 233
popular GitHub Software Projects and characterize software
RNs from the dimensions of Structure, Writing Style, and
Content. We identify three strategies to organize changes
into hierarchical lists: by Change Type, Affected Module, and
Change Priority. We identify three levels of Writing Style:
Expository, Descriptive, and Persuasive. We investigate how
the distributions of different structure strategies, writing styles,
and content types vary with project domains and release types.
Our results clarify confusion regarding RN production, e.g.,
software versioning number specification. We discuss how far
we are to generate practical and informative RNs and provide
a research roadmap for further improvement that we believe
will benefit the community.

Acknowledgments. This work is sponsored by the National
Natural Science Foundation of China 61825201 & 62142201.

[1]

[2]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

REFERENCES

L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Arena: An approach for the automated generation of release
notes,” IEEE Transactions on Software Engineering, vol. 43, no. 2, pp.
106-127, 2017.

J. Wu, H. He, W. Xiao, K. Gao, and M. Zhou, “Demystifying software
release note issues on github,” in 2022 IEEE/ACM 30th International
Conference on Program Comprehension (ICPC), 2022, pp. 602-613.
“Release early, release often from wikipedia,” en.wikipedia.org/wiki/
Release_early,_release_often.

T. Bi, X. Xia, D. Lo, J. Grundy, and T. Zimmermann, “An empirical
study of release note production and usage in practice,” IEEE Transac-
tions on Software Engineering, 2020.

M. Zhou, X. Hu, and W. Xiong, “openeuler: Advancing a hardware
and software application ecosystem,” IEEE Software, vol. 39, no. 2, pp.
101-105, 2022.

“Good practices of writing release notes in stackexchange,”
https://softwareengineering.stackexchange.com/questions/167578/

good- practices-of-writing-release-notes.

S. L. Abebe, N. Ali, and A. E. Hassan, “An empirical study of software
release notes,” Empirical Software Engineering, vol. 21, no. 3, pp. 1107—
1142, 2016.

E. Aghajani, C. Nagy, M. Linares-Vasquez, L. Moreno, G. Bavota,
M. Lanza, and D. C. Shepherd, “Software documentation: the practition-
ers’ perspective,” in 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). 1EEE, 2020, pp. 590-601.

G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Categoriz-
ing the content of github readme files,” Empirical Software Engineering,
vol. 24, no. 3, pp. 1296-1327, 2019.

“User guide - wikipedia,” https://en.wikipedia.org/wiki/User_guide.

F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases
improve software quality? an empirical case study of mozilla firefox,”
in 2012 9th IEEE working conference on mining software repositories
(MSR). 1EEE, 2012, pp. 179-188.

M. Zhou and A. Mockus, “What make long term contributors: Will-
ingness and opportunity in oss community,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012, pp. 518-528.

“The firefox release notes process from mozillawiki,” https://wiki.
mozilla.org/Release_Management/Release_Notes, 2021.

S. S. Nath and B. Roy, “Exploring relevant artifacts of release notes:
The practitioners’ perspective,” in [EEE International Conference
on Software Analysis, Evolution and Reengineering, SANER 2022,
Honolulu, HI, USA, March 15-18, 2022. 1EEE, 2022, pp. 1270-1277.
[Online]. Available: https://doi.org/10.1109/SANERS53432.2022.00152
A. Z. H. Yang, S. Hassan, Y. Zou, and A. E. Hassan, “An empirical
study on release notes patterns of popular apps in the google play
store,” Empir. Softw. Eng., vol. 27, no. 2, p. 55, 2022. [Online].
Available: https://doi.org/10.1007/s10664-021-10086-2

S. Klepper, S. Krusche, and B. Bruegge, “Semi-automatic generation
of audience-specific release notes,” in 2016 IEEE/ACM International
Workshop on Continuous Software Evolution and Delivery (CSED).
IEEE, 2016, pp. 19-22.

M. Ali, A. Aftab, and W. H. Buttt, “Automatic release notes generation,”
in 2020 IEEE 11th International Conference on Software Engineering
and Service Science (ICSESS). 1EEE, 2020, pp. 76-81.

S. S. Nath and B. Roy, “Towards automatically generating release notes
using extractive summarization technique,” in International Conference
on Software Engineering & Knowledge Engineering, SEKE, 2021, pp.
241-248.

H. Jiang, J. Zhu, L. Yang, G. Liang, and C. Zuo, “Deeprelease:
Language-agnostic release notes generation from pull requests of open-
source software,” in 2021 28th Asia-Pacific Software Engineering Con-
ference (APSEC). 1EEE, 2021, pp. 101-110.

H. Kamezawa, N. Nishida, N. Shimizu, T. Miyazaki, and H. Nakayama,
“Rnsum: A large-scale dataset for automatic release note generation
via commit logs summarization,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2022, pp. 8718-8735.

“Semantic release repository on github,” github.com/semantic-release/
semantic-release, 2022.

“github-changelog-generator repository on github,” github.com/
github-changelog- generator/github-changelog- generator, 2022.

“Release it repository on github,” github.com/release-it/release-it, 2022.

[24]

[25]
[26]

[27]

[28]

[29]

(30]
[31]
[32]
[33]

[34]
(35]
[36]

[37]

(38]

(39]

[40]

[41]

[42]
[43]

[44]
[45]

[46]
[47]
(48]
[49]
[50]

[51]

“Release-drafter repository on github,”
release-drafter, 2022.

“About on github,” github.com/about, 2022.
Y. Zhang, M. Zhou, A. Mockus, and Z. Jin, “Companies’ participation
in OSS development-an empirical study of openstack,” IEEE Trans.
Software Eng., vol. 47, no. 10, pp. 2242-2259, 2021. [Online].
Available: https://doi.org/10.1109/TSE.2019.2946156

X. Tan, K. Gao, M. Zhou, and L. Zhang, “An exploratory study of
deep learning supply chain,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE "22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 86-98. [Online].
Available: https://doi.org/10.1145/3510003.3510199

K. Gao, Z. Wang, A. Mockus, and M. Zhou, “On the variability
of software engineering needs for deep learning: Stages, trends, and
application types,” IEEE Transactions on Software Engineering, 2022.
C. Wang, H. He, U. Pal, D. Marinov, and M. Zhou, “Suboptimal
comments in java projects: From independent comment changes to
commenting practices,” ACM Transactions on Software Engineering and
Methodology, 2022.

“The openapi specification repository on github,” github.com/oai/
openapi-specification, 2022.

“Software versioning from wikipedia,” https://en.wikipedia.org/wiki/
Software_versioning, 2022.

“Semantic versioning from semver.org,” https://semver.org/, 07 2022.
L. Ochoa, T. Degueule, J.-R. Falleri, and J. Vinju, “Breaking bad?
semantic versioning and impact of breaking changes in maven central,”
Empirical Software Engineering, vol. 27, no. 3, pp. 1-42, 2022.
“maxwellito/vivus,” github.com/maxwellito/vivus/tree/v0.4.0.

“Sentry repository on github,” github.com/getsentry/sentry/tree/22.7.0.
Y. Zhang, M. Zhou, A. Mockus, and Z. Jin, “Companies’ participation in
oss development—an empirical study of openstack,” IEEE Transactions
on Software Engineering, vol. 47, no. 10, pp. 2242-2259, 2019.

R. He, H. He, Y. Zhang, and M. Zhou, “Automating dependency
updates in practice: An exploratory study on github dependabot,”
CoRR, vol. abs/2206.07230, 2022. [Online]. Available: https://doi.org/
10.48550/arXiv.2206.07230

D. Spadini, M. F. Aniche, and A. Bacchelli, “Pydriller: Python
framework for mining software repositories,” in Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, G. T. Leavens, A. Garcia, and C. S. Pasareanu, Eds.
ACM, 2018, pp. 908-911. [Online]. Available: https://doi.org/10.1145/
3236024.3264598

H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1EEE,
2016, pp. 334-344.

S. E. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in /1th IEEE
International Software Metrics Symposium (METRICS’05). 1EEE, 2005,
pp- 10-pp.

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 1110-1121.

“Description for angular.js convention,” github.com/angular/angular.js/
blob/master/DEVELOPERS.md\#commits, 2022.

“Release dgraph v21.12.0 from graph-io/dgraph,” github.com/dgraph-io/
dgraph/releases/tag/v21.12.0.

“Release 4.0.0 from slimphp/slim,” github.com/slimphp/Slim/pull/2769.
W. Grabe, “Narrative and expository macro-genres,” Genre in the
classroom: Multiple perspectives, pp. 249-267, 2002.

“Writing styles every writer should know - egetleads,” https:
/legetleads.com/6- web-writing-styles-every-writer-should-know/, (Ac-
cessed on 10/24/2022).

“Babel 7,” babeljs.io/blog/2018/08/27/7.0.0.

“Release v7.18.8 from babel/babel,” github.com/babel/babel/releases/
tag/v7.18.8.

“Release-it.json from saleor/saleor,” github.com/saleor/saleor/blob/main/
.release-it.json.

“Release_notes.py from rasahq/rasa,” github.com/RasaHQ/rasa/blob/3.2.
2/scripts/publish_gh_release_notes.py.

“Version 4.3.4 from redis/redis-py,” github.com/redis/redis-py/releases/
tag/v4.3.4.

github.com/release-drafter/

[52]
[53]

[54]

[55]

[56]
[57]
[58]
[59]

[60]

[61]

“Release v1.8.0 from hashicorp/packer,” github.com/hashicorp/packer/
releases/tag/v1.8.0.

“Release v3.0.0 from explosion/spacy,” github.com/explosion/spaCy/
releases/tag/v3.0.0.

M. Li, R. Gao, X. Hu, and Y. Chen, “Comparing infovis designs
with different information architecture for communicating complex
information,” Communication Design Quarterly Review, vol. 5, no. 1,
pp. 43-56, 2017.

B. G. Danaher, H. G. McKay, and J. R. Seeley, “The information
architecture of behavior change websites,” Journal of medical Internet
research, vol. 7, no. 2, p. €406, 2005.

“List of maintainers in linux,” kernel.org/doc/html/latest/process/
maintainers.html.

“Issue #5913 from prisma/prisma,” github.com/prisma/prisma/issues/
5913/\#issuecomment-788326709.

“Release notes best practices — beamer,” www.getbeamer.com/blog/
release-notes- best-practices.

“Reason for minor vs patch rules in semver,” https://stackoverflow.com/
questions/46720398/reason-for-minor- vs-patch-rules-in-semver.

Y. Hou, C. Chen, X. Luo, B. Li, and W. Che, “Inverse is better!
fast and accurate prompt for few-shot slot tagging,” in Findings of
the Association for Computational Linguistics: ACL 2022, Dublin,
Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio,
Eds. Association for Computational Linguistics, 2022, pp. 637-647.
[Online]. Available: https://doi.org/10.18653/v1/2022.findings-acl.53

S. Tu, J. Yu, F. Zhu, J. Li, L. Hou, and J. Nie, “UPER: boosting
multi-document summarization with an unsupervised prompt-based
extractor,” in Proceedings of the 29th International Conference on
Computational Linguistics, COLING 2022, Gyeongju, Republic of
Korea, October 12-17, 2022, N. Calzolari, C. Huang, H. Kim,
J. Pustejovsky, L. Wanner, K. Choi, P. Ryu, H. Chen, L. Donatelli,
H. Ji, S. Kurohashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K.

[62]

[63]

[64]

[65]

[66]

[67]

Lee, E. Santus, F. Bond, and S. Na, Eds. International Committee on
Computational Linguistics, 2022, pp. 6315-6326. [Online]. Available:
https://aclanthology.org/2022.coling- 1.550

E. Reif, D. Ippolito, A. Yuan, A. Coenen, C. Callison-Burch, and J. Wei,
“A recipe for arbitrary text style transfer with large language models,”
in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, S. Muresan, P. Nakov, and A. Villavicencio,
Eds. Association for Computational Linguistics, 2022, pp. 837-848.
[Online]. Available: https://doi.org/10.18653/v1/2022.acl-short.94

Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive
study on challenges in deploying deep learning based software,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 750-762.

T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical study of
common challenges in developing deep learning applications,” in 2079
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2019, pp. 104-115.

E. Aghajani, C. Nagy, O. L. Vega-Mdrquez, M. Linares-Visquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 1EEE, 2019, pp. 1199-1210.

S. Beyer, C. Macho, M. Di Penta, and M. Pinzger, “Automatically
classifying posts into question categories on stack overflow,” in 2018
IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 2018, pp. 211-21110.

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 129-140.

